Đáp án 'câu đố tính số đo của hình tam giác'

Đây không phải là bài toán khó hay phải sử dụng mẹo mà chỉ cần áp dụng các công thức tính toán thông thường.

Giả sử quãng đường AB = 1, BC = x và CA = y.

Gọi thời gian cả 3 con vật chạy hết 3 cạnh tam giác ABC là t.

Ta có 3 phương trình:

t = 1/12 + x/10 + y/15

t = 1/15 + x/15 + y/10

t = 1/10 + x/20 + y/12

Nhân 3 phương trình với 60 để loại bỏ mẫu số, ta có:

5 + 6x + 4y = 4 + 4x + 6y = 6 + 3x + 5y

Từ vế thứ nhất và vế thứ 2, ta có:

5 + 6x + 4y = 4 + 4x + 6y

=> 1 + 2x = 2

=> y1/2 + x = y

Từ vế thứ 2 và vế thứ 3, ta có:

4 + 4x + 6y = 6 + 3x + 5y

=> x + y = 2

Áp dụng kết quả trên, ta có:

x + y = 2

=> x + (1/2 + x ) = 2

=> x = 3/4

Do đó ta có 1/2 + x = 5/4 = y.

Vậy tam giác ABC có cạnh AB = 1, BC = 3/4 và CA = 5/4.

Ta có: AB^2 + BC^2 = 1 + 9/16 = 25/16 = CA^2.

Vậy tam giác ABC vuông tại B. Vậy góc ABC = 90 độ.

<<< Câu hỏi

Tùng Lâm (theo Mindyourdecisions)

Nguồn VTC: https://vtc.vn/kinh-nghiem-song/dap-an-cau-do-tinh-so-do-cua-hinh-tam-giac-ar521826.html